
Rappresentazione delle informazioni

Abbiamo informazioni (numeri, caratteri, immagini, suoni, video. . .) che vogliamo rappresentare (e poter elaborare) in un calcolatore. Per motivi tecnologici un calcolatore lavora solo con i valori 0 e 1 e quindi tutte le informazioni sono rappresentate in forma binaria.

CODIFICA: l'operazione di formalizzazione e scrittura dell'informazione su supporto fisico.

DECODIFICA: l'operazione di interpretazione e lettura dell'informazione da supporto fisico.

Quanti oggetti posso codificare con k bit?

```
->1 bit -> (0, 1) -> 2 oggetti

->2 bit -> (00, 01, 10, 11) -> 4 oggetti

->3 bit -> (000, 001, 010, ..., 111) -> 8 oggetti

->...

->k bit -> (...)-> 2<sup>k</sup> oggetti
```

<u>Domanda</u>: quanti diversi valori posso rappresentare con 2 byte? <u>Risposta</u>: 2 byte = 16 bit, quindi posso rappresentare 2¹⁶ = 65536 diversi valori.

Quanti bit mi servono per codificare N oggetti?

->Devo trovare quel numero K tale che.....N <= 2K

<u>Domanda</u>: quanti bit mi servono per rappresentare 112 diversi valori? <u>Risposta</u>: 7 bit (2⁷ = 128). 6 bit sarebbero stati pochi, mentre 8 bit sarebbero stati troppi!

Rappresentazione dell'informazione numerica

- Numeri naturali (insieme N)
- Numeri interi (insieme Z)
- Numeri razionali (insieme Q)

.....

La precisione con cui i numeri possono essere espressi è finita e predeterminata poiché questi devono essere memorizzati entro un limitato spazio di memoria.

Per rappresentare i numeri si utilizza il sistema binario poiché più adatto a essere maneggiato dal calcolatore.

I numeri a precisione finita sono quelli rappresentati con un numero finito di cifre.

NUMERI NATURALI

Per i numeri naturali si usa la *rappresentazione binaria posizionale:* $(101100)_2 = (44)_{10}$

Con n bit si possono rappresentare 2ⁿ diversi numeri naturali. Quali sono? I numeri rappresentabili appartengono all'intervallo:

$$(0; 2^n - 1)$$

n è la dimensione (in bit) della cella di memoria che contiene il numero

Insieme dei valori rappresentabili:

```
con 1 byte si possono rappresentare i num tra (0; 2^8 - 1) cioè tra (0; 255) con 2 byte (0; 2^{16} - 1).....(0; 65535) con 4 byte (0; 2^{32} - 1).....(0; 4*10^9) *** la più utilizzata *** con 8 byte (0; 2^{64} - 1)......(0; ????)
```

Dato che lo spazio disponibile è finito, vi sono dei limiti nella dimensione dei numeri memorizzabili

Le operazioni con i numeri a precisione finita causano errori quando il loro risultato non appartiene all'insieme dei valori rappresentabili:

- Underflow: si verifica quando il risultato dell'operazione è minore del più piccolo valore rappresentabile
- Overflow: si verifica quando il risultato dell'operazione è maggiore del più grande valore rappresentabile
- Non appartenenza all'insieme: si verifica quando il risultato dell'operazione, pur non essendo troppo grande o troppo piccolo, non appartiene all'insieme dei valori rappresentabili

<u>Esempio</u>: si considerino i numeri naturali di tre cifre, non possono essere rappresentati:

- Numeri superiori a 999
- Numeri negativi
- □ Frazioni e numeri irrazionali

Alcuni errori possibili in operazioni fra tali numeri:

- ☐ 600+600 = 1200 Overflow
- ☐ 300-600 = -300 Underflow
- 007/002 = 3.5 Non appartenenza all'insieme

Valore minimo di una sequenza di n cifre binarie: $000 \dots 0$ (n volte) = 0^{10} Valore massimo di una sequenza di n cifre binarie: $1111 \dots 111$ (n volte) = $2^n - 1$

Esempio con n = 3: $111 = 2^2 + 2 + 1 = 7 = 2^3 -1$

NUMERI INTERI

Modulo e segno (MS)

- → E' indispensabile indicare il numero K di bit utilizzati per la rappresentazione
- →Il bit più a sinistra (il + significativo) rappresenta il segno del numero: 0 = '+', 1 = '-'
- → I rimanenti k-1 bit rappresentano il modulo

Come si converte da decimale a Modulo e Segno? (10 -> MS)

Si calcola la rappresentazione binaria del valore assoluto del numero senza il bit del segno poi se il numero è negativo si pone = a 1 il bit del segno se il numero è positivo si pone = a 0 il bit del segno.

NB: il bit del segno non ha significato numerico

Esempi:

se utilizzo 4 bit.....

```
+7 = (0111)_{ms}, -7 = (1111)_{ms}
+6 = (0110)_{ms}, -6 = (1110)_{ms}
```

se utilizzo 8 bit.....

 $-5 = (10000101)_{ms}$, $+5 = (00000101)_{ms}$

Come si converte da Modulo e Segno a decimale? (MS ->10)

Si elimina il bit del segno e si converte il valore assoluto in notazione decimale. Il risultato sarà il valore assoluto se il bit di segno è 0, oppure il corrispondente numero negativo se il bit di segno è 1.

Esempi:

se utilizzo 8 bit.....

Voglio sapere a quale numero decimale corrisponde il numero (10001011) $_{ms}$.

Il bit più significativo è 1 quindi il numero è negativo.

Elimino il bit del segno mi rimangono 7 bit 0001011. Converto il numero in decimale....il numero è 11. Quindi $(10001011)_{ms} = -11$

• se utilizzo 5 bit.....

Voglio sapere a quale numero decimale corrisponde il numero (01111)_{ms}.

Il bit più significativo è O quindi il numero è positivo.

Elimino il bit del segno mi rimangono 4 bit 1111. Converto in numero in decimale....il numero è 15. Quindi $(01111)_{ms} = +15$

Vediamo la rappresentazione dei numeri da -7 a +7 in MS:

Codice	Nat	MS
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7

Codice	Nat	MS
1000	8	-0
1001	9	-1
1010	10	-2
1011	11	-3
1100	12	-4
1101	13	-5
1110	14	-6
1111	15	-7

Attenzione...... ci sono due zeri: $+0=0000_{ms}$ e $-0=1000_{ms}$

In modulo e segno, con n bit, possiamo rappresentare gli interi nell'intervallo da:

$$(-(2^{n-1}-1); 2^{n-1}-1)$$

Con n=4 bit i valori rappresentabili vanno da $-2^3+1=-7$ a $2^3-1=+7$ Con n=8 bit i valori rappresentabili vanno da $-2^7+1=-127$ a $2^7-1=+127$ Con n=16 bit i valori rappresentabili vanno da -32767 a +32767Con n=32 bit i valori rappresentabili vanno da -2×10^9 a $+2\times10^9$

Problemi:

- C'è una doppia rappresentazione per lo zero e si spreca una configurazione
- Le operazioni tra numeri rappresentati in MS richiedono algoritmi complessi altrimenti provocano degli errori.

ES sommiamo i numeri:

ESERCIZI

Esercizio 1:

Rappresenta i seguenti valori nella notazioni in modulo e segno utilizzando 8 bit.

 $a = 13_{10}$

 $b = -3_{10}$

 $c = -15_{10}$

 $d = -20_{10}$

 $e = -72_{10}$

Esercizio 2;

A quali numeri decimali corrispondono i seguenti numeri binari rappresentati in MS con

4 bit?

 $a = 0111_{ms}$

 $b = 1101_{ms}$

 $c = 1010 \, \text{ms}$

Esercizio 3:

Rappresentare in modulo e segno i seguenti numeri negativi su 10 bit:

- -31
- · -109
- -321

Esercizio 4:

A quali numeri decimali corrispondono i seguenti numeri binari rappresentati in MS con 8 bit?

- · (10000110)_{ms}
- · (10001110)_{ms}
- · (10000011)_{ms}
- · (00000101)_{ms}

Ancora esercizi...

Convertire il numero -1310 in modulo e segno a 6 bit.

Convertire i numeri 0111_{MS} e 1111_{MS} in decimale.

Che numeri rappresentano 10100 e 01110 in MS?

Complemento a 2 (C2)

- → E' indispensabile indicare il numero K di bit utilizzati per la rappresentazione
- →Il bit più a sinistra rappresenta il segno del numero: 0 = '+' , 1 = '-'
- →La parte restante della rappresentazione NON è il valore assoluto del numero, lo è soltanto per i numeri positivi
- → C'è una sola rappresentazione dello 0. Non ci sono più configurazioni "sprecate": Con 4 bit $0000_{c2} = 0_{10}$ mentre $1000_{c2} = -8_{10}$

Come si converte da Decimale a C2? (10 -> C2)

- <u>Numeri interi positivi (compreso lo 0)</u>: un numero positivo è rappresentato in modo standard su k bit (come abbiamo visto per modulo e segno)
- <u>Numeri interi negativi:</u> si trova la rappresentazione di -X a partire da quella di
 X. Effettuare il complemento di ogni bit di X e aggiungere 1....

I tre passi da compiere:

- 1) rappresentare X in modo standard su k bit
- 2)complementare tutti i bit $(1 \triangleright 0, 0 \triangleright 1)$
- 3)sommare 1 al risultato

Esempio: dati 4 bit trovare la rappresentazione di -6 in C2 rappresentazione di +6₁₀= 0110 complemento tutti i bit = 1001 Aggiungo 1 a 1001 ottenendo 1010 Risultato -6₁₀ = 1010 $_{C2}$

Esempio: dati 4 bit trovare la rappresentazione di +6 in C2 rappresentazione di +6₁₀= 0110_{C2}

Esempio: dati 8 bit trovare la rappresentazione di -27 in C2 Rappresentazione di +27 $_{10}$ = 00011011 Complemento tutti i bit = 11100100 Aggiungo 1 a 11100100 ottenendo 11100101 Risultato -27 $_{10}$ = 11100101 $_{c2}$

Esempio: dati 8 bit trovare la rappresentazione di -1 e 1 in C2 Rappresentazione di $+1_{10}$ = 00000001 Complemento tutti i bit = 11111110 Aggiungo 1 a 11111110 ottenendo 11111111 Risultato -1_{10} = 11111111 $_{c2}$

Vediamo la rappresentazione dei numeri da -7 a +7 in C2:

Codice	Nat	MS	C2
0000	0	0	0
0001	1	1	1
0010	2	2	2
0011	3	3	3
0100	4	4	4
0101	5	5	5
0110	6	6	6
0111	7	7	7

Codice	Nat	MS	C2
1000	8	-0	-8
1001	9	-1	-7
1010	10	-2	-6
1011	11	-3	-5
1100	12	-4	-4
1101	13	-5	-3
1110	14	-6	-2
1111	15	-7	-1

ATTENZIONE: valori opposti es. -4 e +4 hanno rappresentazioni completamente diverse!!!

Come si converte da C2 a Decimale? (C2->10)

- <u>Numeri interi positivi (compreso lo 0):</u> stesso procedimento della codifica modulo e segno
- Numeri interi negativi:

Prendo in considerazione tutti i bit compreso anche il bit del segno.

- si sottrae 1 al numero rappresentato in C2
- si complementano tutti i bit $(1 \triangleright 0, 0 \triangleright 1)$
- · si converte da binario a decimale e si aggiunge il segno

Esempio:

A quale numero decimale corrisponde il numero 1100101_{c2} rappresentato con 7 bit? E' un numero negativo perché il bit più significativo è uguale a uno. Prendo in considerazione tutti i bit compreso anche il bit del segno. Sottraggo 1 al numero ottenendo1100100. Complemento tutti i bit ottenendo 0011011=1+2+8+16=27. Quindi il numero è -27

Esempio:

A quale numero decimale corrisponde il numero 00001110_{c2} rappresentato con 8 bit? E' un numero positivo perché il bit più significativo è uguale a zero. Procedo come per MS. 1110=2+4+8=14. Quindi il numero è +14

Esempio:

A quale numero decimale corrisponde il numero 1101100_{C2} rappresentato con 7 bit? E' un numero negativo perché il bit più significativo è uguale a uno. Prendo in considerazione tutti i bit compreso anche il bit del segno. Sottraggo 1 al numero ottenendo 1101011. Complemento tutti i bit ottenendo 0010100=4+16=20. Quindi il numero è -20.

In complemento a 2, con n bit, possiamo rappresentare gli interi nell'intervallo da:

$$(-2^{n-1}; 2^{n-1}-1)$$

Con k=4 bit i valori rappresentabili vanno da -8 a +7
Con k=8 bit i valori rappresentabili vanno da -128 a +127
Con k=16 bit i valori rappresentabili vanno da -32768 a + 32767

......

ESERCIZI

Esercizio 1:

Rappresenta i seguenti valori nella notazioni in complemento a 2 utilizzando 8 bit.

a = 1310

b = -310

c = -1510

d = -2010

e = -7210

Esercizio 2:

Si considerino le seguenti stringhe di 4 bit. Le si interpreti come valori interi espressi in C2.

 $a = 0111_{C2}$

 $b = 1101_{C2}$

 $c = 1010_{C2}$

Esercizio 3:

Rappresentare in C2 i seguenti numeri negativi su 10 bit:

- -31
- -109
- -321

Esercizio 4:

Convertire in complemento a 2 i seguenti numeri:

$$(12)_{10}$$
, $(-12)_{10}$, $(-8)_{10}$, $(1)_{10}$, $(-54)_{10}$

Esercizio 5:

Scrivere i sequenti numeri decimali in binario, ms e c2 (8 bit): 15,-19,-128, 45, -232